来自磁共振成像(MRI)的体积图像在直肠癌的术前分期提供了宝贵的信息。最重要的是,T2和T3阶段之间的准确术前歧视可以说是直肠癌治疗的最具挑战性和临床意义的任务,因为通常建议对T3(或更大)阶段癌症患者进行化学疗法。在这项研究中,我们提出了一个体积卷积神经网络,可准确区分T2与直肠MR体积的T3阶段直肠癌。具体而言,我们提出1)基于自定义的基于重新连接的卷编码器,该编码器与晚期融合的固定间关系建模(即最后一层的3D卷积),2)双线性计算,该计算汇总了编码器所得的功能以创建一个创建一个的功能体积特征和3)三重损失和焦点损失的关节最小化。通过病理确认的T2/T3直肠癌的MR量,我们进行了广泛的实验,以比较残留学习框架内的各种设计。结果,我们的网络达到了0.831的AUC,高于专业放射科医生组的准确性。我们认为该方法可以扩展到其他卷分析任务
translated by 谷歌翻译
可靠的交通流量预测对于创建智能运输系统至关重要。已经开发出许多基于大数据的预测方法,但他们在考虑时间和地点的道路之间没有反映复杂的动态相互作用。在这项研究中,我们提出了一种动态定位的长短期记忆(LSTM)模型,涉及道路之间的空间和时间依赖。为此,我们使用局部动态空间权重矩阵以及其动态变化。此外,LSTM模型可以处理具有长依赖性的顺序数据以及复杂的非线性功能。经验结果表明,与两种不同的基线方法相比,所提出的模型的卓越预测性能。
translated by 谷歌翻译
From smoothly pursuing moving objects to rapidly shifting gazes during visual search, humans employ a wide variety of eye movement strategies in different contexts. While eye movements provide a rich window into mental processes, building generative models of eye movements is notoriously difficult, and to date the computational objectives guiding eye movements remain largely a mystery. In this work, we tackled these problems in the context of a canonical spatial planning task, maze-solving. We collected eye movement data from human subjects and built deep generative models of eye movements using a novel differentiable architecture for gaze fixations and gaze shifts. We found that human eye movements are best predicted by a model that is optimized not to perform the task as efficiently as possible but instead to run an internal simulation of an object traversing the maze. This not only provides a generative model of eye movements in this task but also suggests a computational theory for how humans solve the task, namely that humans use mental simulation.
translated by 谷歌翻译
Yes. In this paper, we investigate strong lottery tickets in generative models, the subnetworks that achieve good generative performance without any weight update. Neural network pruning is considered the main cornerstone of model compression for reducing the costs of computation and memory. Unfortunately, pruning a generative model has not been extensively explored, and all existing pruning algorithms suffer from excessive weight-training costs, performance degradation, limited generalizability, or complicated training. To address these problems, we propose to find a strong lottery ticket via moment-matching scores. Our experimental results show that the discovered subnetwork can perform similarly or better than the trained dense model even when only 10% of the weights remain. To the best of our knowledge, we are the first to show the existence of strong lottery tickets in generative models and provide an algorithm to find it stably. Our code and supplementary materials are publicly available.
translated by 谷歌翻译
Deep neural networks have been successfully adopted to diverse domains including pathology classification based on medical images. However, large-scale and high-quality data to train powerful neural networks are rare in the medical domain as the labeling must be done by qualified experts. Researchers recently tackled this problem with some success by taking advantage of models pre-trained on large-scale general domain data. Specifically, researchers took contrastive image-text encoders (e.g., CLIP) and fine-tuned it with chest X-ray images and paired reports to perform zero-shot pathology classification, thus completely removing the need for pathology-annotated images to train a classification model. Existing studies, however, fine-tuned the pre-trained model with the same contrastive learning objective, and failed to exploit the multi-labeled nature of medical image-report pairs. In this paper, we propose a new fine-tuning strategy based on sentence sampling and positive-pair loss relaxation for improving the downstream zero-shot pathology classification performance, which can be applied to any pre-trained contrastive image-text encoders. Our method consistently showed dramatically improved zero-shot pathology classification performance on four different chest X-ray datasets and 3 different pre-trained models (5.77% average AUROC increase). In particular, fine-tuning CLIP with our method showed much comparable or marginally outperformed to board-certified radiologists (0.619 vs 0.625 in F1 score and 0.530 vs 0.544 in MCC) in zero-shot classification of five prominent diseases from the CheXpert dataset.
translated by 谷歌翻译
The standard empirical risk minimization (ERM) can underperform on certain minority groups (i.e., waterbirds in lands or landbirds in water) due to the spurious correlation between the input and its label. Several studies have improved the worst-group accuracy by focusing on the high-loss samples. The hypothesis behind this is that such high-loss samples are \textit{spurious-cue-free} (SCF) samples. However, these approaches can be problematic since the high-loss samples may also be samples with noisy labels in the real-world scenarios. To resolve this issue, we utilize the predictive uncertainty of a model to improve the worst-group accuracy under noisy labels. To motivate this, we theoretically show that the high-uncertainty samples are the SCF samples in the binary classification problem. This theoretical result implies that the predictive uncertainty is an adequate indicator to identify SCF samples in a noisy label setting. Motivated from this, we propose a novel ENtropy based Debiasing (END) framework that prevents models from learning the spurious cues while being robust to the noisy labels. In the END framework, we first train the \textit{identification model} to obtain the SCF samples from a training set using its predictive uncertainty. Then, another model is trained on the dataset augmented with an oversampled SCF set. The experimental results show that our END framework outperforms other strong baselines on several real-world benchmarks that consider both the noisy labels and the spurious-cues.
translated by 谷歌翻译
We introduce the MAsked Generative VIdeo Transformer, MAGVIT, to tackle various video synthesis tasks with a single model. We introduce a 3D tokenizer to quantize a video into spatial-temporal visual tokens and propose an embedding method for masked video token modeling to facilitate multi-task learning. We conduct extensive experiments to demonstrate the quality, efficiency, and flexibility of MAGVIT. Our experiments show that (i) MAGVIT performs favorably against state-of-the-art approaches and establishes the best-published FVD on three video generation benchmarks, including the challenging Kinetics-600. (ii) MAGVIT outperforms existing methods in inference time by two orders of magnitude against diffusion models and by 60x against autoregressive models. (iii) A single MAGVIT model supports ten diverse generation tasks and generalizes across videos from different visual domains. The source code and trained models will be released to the public at https://magvit.cs.cmu.edu.
translated by 谷歌翻译
FSS(Few-shot segmentation)~aims to segment a target class with a small number of labeled images (support Set). To extract information relevant to target class, a dominant approach in best performing FSS baselines removes background features using support mask. We observe that this support mask presents an information bottleneck in several challenging FSS cases e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary source of features in generating super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS baselines. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves the performance by visible margins and allows faster convergence. Our codes and models will be publicly released.
translated by 谷歌翻译
Semi-supervised anomaly detection is a common problem, as often the datasets containing anomalies are partially labeled. We propose a canonical framework: Semi-supervised Pseudo-labeler Anomaly Detection with Ensembling (SPADE) that isn't limited by the assumption that labeled and unlabeled data come from the same distribution. Indeed, the assumption is often violated in many applications - for example, the labeled data may contain only anomalies unlike unlabeled data, or unlabeled data may contain different types of anomalies, or labeled data may contain only 'easy-to-label' samples. SPADE utilizes an ensemble of one class classifiers as the pseudo-labeler to improve the robustness of pseudo-labeling with distribution mismatch. Partial matching is proposed to automatically select the critical hyper-parameters for pseudo-labeling without validation data, which is crucial with limited labeled data. SPADE shows state-of-the-art semi-supervised anomaly detection performance across a wide range of scenarios with distribution mismatch in both tabular and image domains. In some common real-world settings such as model facing new types of unlabeled anomalies, SPADE outperforms the state-of-the-art alternatives by 5% AUC in average.
translated by 谷歌翻译
Online Temporal Action Localization (On-TAL) aims to immediately provide action instances from untrimmed streaming videos. The model is not allowed to utilize future frames and any processing techniques to modify past predictions, making On-TAL much more challenging. In this paper, we propose a simple yet effective framework, termed SimOn, that learns to predict action instances using the popular Transformer architecture in an end-to-end manner. Specifically, the model takes the current frame feature as a query and a set of past context information as keys and values of the Transformer. Different from the prior work that uses a set of outputs of the model as past contexts, we leverage the past visual context and the learnable context embedding for the current query. Experimental results on the THUMOS14 and ActivityNet1.3 datasets show that our model remarkably outperforms the previous methods, achieving a new state-of-the-art On-TAL performance. In addition, the evaluation for Online Detection of Action Start (ODAS) demonstrates the effectiveness and robustness of our method in the online setting. The code is available at https://github.com/TuanTNG/SimOn
translated by 谷歌翻译